18F-FDOPA kinetics in brain tumors.
نویسندگان
چکیده
UNLABELLED L-3,4-Dihydroxy-6-(18)F-fluoro-phenyl-alanine ((18)F-FDOPA) is an amino acid analog used to evaluate presynaptic dopaminergic neuronal function. Evaluation of tumor recurrence in neurooncology is another application. Here, the kinetics of (18)F-FDOPA in brain tumors were investigated. METHODS A total of 37 patients underwent 45 studies; 10 had grade IV, 10 had grade III, and 13 had grade II brain tumors; 2 had metastases; and 2 had benign lesions. After (18)F-DOPA was administered at 1.5-5 MBq/kg, dynamic PET images were acquired for 75 min. Images were reconstructed with iterative algorithms, and corrections for attenuation and scatter were applied. Images representing venous structures, the striatum, and tumors were generated with factor analysis, and from these, input and output functions were derived with simple threshold techniques. Compartmental modeling was applied to estimate rate constants. RESULTS A 2-compartment model was able to describe (18)F-FDOPA kinetics in tumors and the cerebellum but not the striatum. A 3-compartment model with corrections for tissue blood volume, metabolites, and partial volume appeared to be superior for describing (18)F-FDOPA kinetics in tumors and the striatum. A significant correlation was found between influx rate constant K and late uptake (standardized uptake value from 65 to 75 min), whereas the correlation of K with early uptake was weak. High-grade tumors had significantly higher transport rate constant k(1), equilibrium distribution volumes, and influx rate constant K than did low-grade tumors (P < 0.01). Tumor uptake showed a maximum at about 15 min, whereas the striatum typically showed a plateau-shaped curve. Patlak graphical analysis did not provide accurate parameter estimates. Logan graphical analysis yielded reliable estimates of the distribution volume and could separate newly diagnosed high-grade tumors from low-grade tumors. CONCLUSION A 2-compartment model was able to describe (18)F-FDOPA kinetics in tumors in a first approximation. A 3-compartment model with corrections for metabolites and partial volume could adequately describe (18)F-FDOPA kinetics in tumors, the striatum, and the cerebellum. This model suggests that (18)F-FDOPA was transported but not trapped in tumors, unlike in the striatum. The shape of the uptake curve appeared to be related to tumor grade. After an early maximum, high-grade tumors had a steep descending branch, whereas low-grade tumors had a slowly declining curve, like that for the cerebellum but on a higher scale.
منابع مشابه
[18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression
[18F]-FDOPA is a labeled amino acid (AA) analog used for positron emission tomography (PET) which is gaining increasing interest in the evaluation of brain tumors (BT). The AA-transporter LAT1 has been shown to be involved in [18F]-FDOPA uptake. The aim of this study was to determine whether the [18F]-FDOPA uptake was correlated with level of LAT1 expression in BT. Twenty-eight BT (including 19...
متن کامل18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy.
UNLABELLED We evaluated the amino acid and glucose metabolism of brain tumors by using PET with 3,4-dihydroxy-6-(18)F-fluoro-l-phenylalanine ((18)F-FDOPA) and (18)F-FDG. METHODS Eighty-one patients undergoing evaluation for brain tumors were studied. Initially, 30 patients underwent PET with (18)F-FDOPA and (18)F-FDG within the same week. Tracer kinetics in normal brain and tumor tissues were...
متن کاملTime profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic L-DOPA.
At least two rates of dopamine turnover have been demonstrated in vivo, including a slow turnover rate that is associated with synaptic vesicles, and a faster rate that leads to rapid production of dopamine metabolites. Similarly, [18F]6-fluorodopamine (FDA), the decarboxylation product of the PET tracer [18F]6-fluoro-L-DOPA (FDOPA), may have multiple turnover rates which could substantially af...
متن کاملImproved GMP-compliant multi-dose production and quality control of 6-[18F]fluoro-L-DOPA
Background 6-[18F]Fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) is a frequently used radiopharmaceutical for detecting neuroendocrine and brain tumors and for the differential diagnosis of Parkinson's disease. To meet the demand for FDOPA, a high-yield GMP-compliant production method is required. Therefore, this study aimed to improve the FDOPA production and quality control procedures to enable ...
متن کاملDual time point method for the quantification of irreversible tracer kinetics: A reference tissue approach applied to [18F]-FDOPA brain PET.
The Patlak graphical analysis (PGAREF) for quantification of irreversible tracer binding with a reference tissue model was approximated by a dual time point imaging approach (DTPREF). The DTPREF was applied to 18 [18F]-FDOPA brain scans using the occipital cortex as reference region (DTPOCC) and compared to both PGAOCC and striatal-to-occipital ratios (SOR). Pearson correlation analysis and Bla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 48 10 شماره
صفحات -
تاریخ انتشار 2007